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Abstract. M. Beiglböck, V. Bergelson, and A. Fish proved that if G is a countable
amenable group and A and B are subsets of G with positive Banach density, then the
product set AB is piecewise syndetic. This means that there is a finite subset E of
G such that EAB is thick, that is, EAB contains translates of any finite subset of
G. When G = Z, this was first proven by R. Jin. We prove a quantitative version of
the aforementioned result by providing a lower bound on the density (with respect to
a Følner sequence) of the set of witnesses to the thickness of EAB. When G = Zd,
this result was first proven by the current set of authors using completely different
techniques.

1. Introduction

In the paper [6], R. Jin proved that if A and B are subsets of Z with positive Banach
density, then A+B is piecewise syndetic. This means that there is m ∈ N such that A+
B+[−m,m] is thick, i.e. it contains arbitrarily large intervals. Jin’s result has since been
extended in two different ways. First, using ergodic theory, M. Beiglböck, V. Bergelson,
and A. Fish [2] established Jin’s result for arbitrary countable amenable groups (with
suitable notions of Banach density and piecewise syndeticity); in [5], M. Di Nasso and
M. Lupini gave a simpler proof of the amenable group version of Jin’s theorem using
nonstandard analysis which works for arbitrary (not necessarily countable) amenable
groups and also gives a bound on the size of the finite set needed to establish that the
product set is thick. Second, in [4] the current set of authors established a “quantitative
version” of Jin’s theorem by proving that there is m ∈ N such that the set of witnesses
to the thickness of A + B + [−m,m] has upper density at least as large as the upper
density of A. (We actually prove this result for subsets of Zd for any d.) The goal of
this article is to prove the quantitative version of the result of Beiglböck, Bergelson, and
Fish.

In the following, we assume that G is a countable amenable group1: for every finite
subset E of G and every ε > 0, there exists a finite subset L of G such that, for every
x ∈ E, we have |xL4 L| ≤ ε |L|. We recall that G is amenable if and only if it has a
(left) Følner sequence, which is a sequence S = (Sn) of finite subsets of G such that,

for every x ∈ G, we have |xSn4Sn||Sn| → 0 as n→ +∞. A two-sided Følner sequence (Sn)

satisfies a stronger requirement: for every x, y ∈ G, we have |xSny4Sn||Sn| → 0 as n→ +∞.

Every countable amenable group has a two-sided Følner sequence [8].
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1For those not familiar with amenable groups, let us mention in passing that the class of (countable)
amenable groups is quite robust, e.g. contains all finite and abelian groups and is closed under subgroups,
quotients, extensions, and direct limits. It follows, for example, that every countable virtually solvable
group is amenable.
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If S is a Følner sequence and A ⊆ G, we define the corresponding (upper) S-density
of A to be

dS (A) := lim sup
n→+∞

|A ∩ Sn|
|Sn|

.

For example, note that if G = Zd and S = (Sn) where Sn = [−n, n]d, then dS is the
usual notion of upper density for subsets of Zd.

Following [2], we define the (left) Banach density of A, BD (A), to be the supremum
of dS (A) where S ranges over all Følner sequences of G. One can verify (see [2]) that
this notion of Banach density agrees with the usual notion of Banach density when
G = Zd. In [3, Definition 2.11], the authors consider the two-sided version BD2(A) of
Banach density, which is defined as the supremum of dS (A) where S ranges over all
two-sided Følner sequences of G. Clearly BD2 is bounded from above by BD with strict
inequality possible ([3, Example 4.12]). Note that in the case of abelian groups, the two
densities coincide.

Recall that a subset A of G is thick if for every finite subset L of G there exists a
right translate Lx of L contained in A. A subset A of G is piecewise syndetic if FA is
thick for some finite subset F of G.

Definition. Suppose that G is a countable discrete group, S is a Følner sequence for
G, A is a subset of G, and α > 0. We say that A is

• S-thick of level α if for every finite subset L of G, the set {x ∈ G : Lx ⊆ A} has
S-density at least α;
• S-syndetic of level α if there exists a finite subset F of G such that FA is S-thick

of level α.

The following is the main result of this paper:

Theorem. Suppose that G is a countable amenable group and S is a Følner sequence
for G. If A and B are subsets of G such that dS(A) = α > 0 and BD(B) > 0, then
BA is S-syndetic of level α′ for every α′ < α. If moreover BD2(B) > 0, then BA is
S-syndetic of level α.

When G = Zd and S = (Sn) where Sn = [−n, n]d, we recover [4, Theorem 14]. We
also recover [4, Theorem 18], which states (in the current terminology) that if A,B ⊆ Zd
are such that d(A) = α > 0 and BD(B) > 0, then A + B is S ′-syndetic of level α for
any subsequence S ′ of the aforementioned S.

As in the proof of [4, Theorem 14], we deduce the second assertion in the main
theorem from the first one. In fact, if dS(A) = α, then either A is already S-thick of
level α or else there is g ∈ G for which dS(A ∪ gA) > α. We then show that there
exists a subset B0 of B of positive Banach density such that B0A and B0gA are both
contained in BA, whence we can apply the first assertion to B0 and A ∪ gA.

In their proof of the amenable group version of Jin’s theorem, the authors of [5] give
a bound on the size of a finite set needed to witness piecewise syndeticity: if G is a
countable amenable group and A and B are subsets of G of Banach densities α and β
respectively, then there is a finite subset E of G with |E| ≤ 1

αβ such that EAB is thick.

In Section 3, we improve upon this theorem in two ways: we slightly improve the bound
on |E| from 1

αβ to 1
αβ −

1
α + 1 and we show that, if S is any Følner sequence such that

dS (A) > 0, then EAB is S-thick of level s for some s > 0.
It is interesting to note that it is not clear how to use the techniques of this paper to

generalize the quantitative results concerning lower density [4, Theorems 19 and 22] to
the amenable group setting.
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Notions from nonstandard analysis. We use nonstandard analysis to prove our
main results. An introduction to nonstandard analysis with an eye towards applications
to combinatorics can be found in [7]. Here, we just fix notation.

If r, s are finite hyperreal numbers, we write r . s to mean st(r) ≤ st(s) and we write
s ≈ r to mean st(r) = st(s).

If X is a hyperfinite subset of ∗G, we denote by µX the corresponding Loeb measure.
If, moreover, Y ⊆ ∗G is internal, we abuse notation and write µX(Y ) for µX(X ∩ Y ).

If S = (Sn) is a Følner sequence for G and ν is an infinite hypernatural number, then
we denote by Sν the value at ν of the nonstandard extension of S. It follows readily
from the definition that dS (A) is the maximum of µSν (∗A) as ν ranges over all infinite
hypernatural numbers. It is also not difficult to verify that a countable discrete group
G is amenable if and only if it admits a Følner approximation, which is a hyperfinite
subset X of ∗G such that |gX 4X| / |X| is infinitesimal for every g ∈ G. (One direction
of this equivalence is immediate: if (Sn) is a Følner sequence for G, then Sν is a Følner
approximation for G whenever ν is an infinite hypernatural number.) The Banach
density BD (A) of an infinite subset A of G is then the maximum of µX (∗A) as X
ranges over all Følner approximations X of G; see [5].

2. High density piecewise syndeticity

In this section, we fix a countable amenable group G and an arbitrary Følner sequence
S = (Sn) for G.

Lemma 2.1. If dS(A) ≥ α and BD (B) ≥ β, then there exist a Følner approximation
Y of G and an infinite hypernatural number ν such that

|∗A ∩ Sν |
|Sν |

& α,
|∗B ∩ Y |
|Y |

& β

and

1

|Sν |
∑
x∈Sν

∣∣∣x (∗A ∩ Sν)−1 ∩ (∗B ∩ Y )
∣∣∣

|Y |
& αβ.

Proof. Pick a Følner approximation Y of G such that

|∗B ∩ Y |
|Y |

& β.

We claim that there exists an infinite hypernatural number ν such that

|∗A ∩ Sν |
|Sν |

& α and
∑
y∈Y

∣∣y−1Sν 4 Sν
∣∣

|Sν |
≈ 0.

This can be seen by applying transfer to the statement “for every finite subset E of G
and for every natural number n0 there exists n > n0 such that

1

|Sn|
|A ∩ Sn| > α− 2−n0 and

1

|Sn|
∑
x∈E

∣∣x−1Sn 4 Sn
∣∣ < 2−n0”,

and then applying the transferred statement to Y and an infinite hypernatural number
ν0. Set C = ∗A ∩ Sν , and D = ∗B ∩ Y .

We finish by arguing as in the proof of [5, Lemma 2.3]. For the sake of completeness,
we include the details here. Let χC denote the characteristic function of C. We then
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have

1

|Sν |
∑
x∈Sν

∣∣xC−1 ∩D
∣∣

|Y |
=

1

|Sν |
∑
x∈Sν

1

|Y |
∑
d∈D

χC(d−1x)

=
1

|Y |
∑
d∈D

∣∣C ∩ d−1Sν
∣∣

|Sν |

≥ |D|
|Y |
|C|
|Sν |
− 1

|Sν |
∑
d∈D

∣∣d−1Sν 4 Sν
∣∣

≈
|C|
|Sν |
|D|
|Y |

.

�

Theorem 2.2. Suppose that G is a countable amenable group, S = (Sn) a Følner
sequence for G, and A,B ⊆ G. If dS (A) > α and BD(B) > 0, then BA is S-syndetic
of level α.

Proof. By [2, Lemma 3.2], there is (standard) r > 0 and a finite subset T of G such
that dS (A) ·BD (TB) > α+ r. Since BA is S-syndetic of level α if and only if TBA is
S-syndetic of level α, we may thus assume that T = {1}. Suppose that ν ∈ ∗N\N and
Y ⊆ ∗G are obtained from A and B as in Lemma 2.1. Set C = ∗A∩Sν and D = ∗B∩Y .
Consider the internal set

Γ :=

{
x ∈ Sν :

∣∣xC−1 ∩D
∣∣

|Y |
≥ r

}
.

Observe that

α+ r <
1

|Sν |
∑
x∈Sν

∣∣xC−1 ∩D
∣∣

|Y |

=
1

|Sν |
∑
x∈Γ

∣∣xC−1 ∩D
∣∣

|Y |
+

1

|Sν |
∑
x/∈Γ

∣∣xC−1 ∩D
∣∣

|Y |
≤ |Γ|
|Sν |

+ r

and hence µSν (Γ) ≥ α.
We now define by recursion a nested sequence of subsets (Hn) of G and a sequence

(sn) from G. First, set

H0 :=

{
g ∈ G :

1

|Γ|
|{x ∈ Γ : gx /∈ ∗ (BA)}| 6≈ 0

}
.

Assuming Hn has been defined and is nonempty, let sn be any element of Hn and set

Hn+1 :=

{
g ∈ G :

1

|Γ|
|{x ∈ Γ : gx /∈ ∗ ({s0, . . . , sn}BA)}| 6≈ 0

}
.

If Hn = ∅ then we set Hn+1 = ∅.
We first show that Hn = ∅ whenever n >

⌊
1
r

⌋
− 1. Towards this end, suppose that

n ≥ 1 and H0, . . . ,Hn−1 6= ∅. For 0 ≤ k ≤ n− 1, fix sk ∈ Hk and γk ∈ Γ such that

skγk /∈ ∗ ({s0, . . . , sk−1}BA) .

Observe that the sets

s0(γ0C
−1 ∩D), s1(γ1C

−1 ∩D), . . . , sn−1(γn−1C
−1 ∩D)

are pairwise disjoint. In fact, if

skD ∩ sjγjC−1 6= ∅
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for some 0 ≤ k < j ≤ n− 1, then,

sjγj ∈ skDC ⊆ ∗ ({s0, . . . , sj−1}BA) ,

contradicting our choice of γj . Recalling that Y is a Følner approximation for G, it
follows that

1 &
1

|Y |

∣∣∣∣∣
n−1⋃
k=0

sk(γkC
−1 ∩D)

∣∣∣∣∣ =
n−1∑
k=0

∣∣γkC−1 ∩D
∣∣

|Y |
≥ nr

and hence n ≤ 1
r .

Take the least n such that Hn = ∅. (Note then that n ≤
⌊

1
r

⌋
, and that n = 0 is

possible.) Set E = {1, s0, . . . , sn−1}. (Note that E = {1} if n = 0.) We claim that
EBA is S-thick of level α. Since Hn = ∅, for every g ∈ G, we have that

1

|Γ|
|{x ∈ Γ : gx ∈ ∗ (EBA)}| ≈ 1.

Therefore, for every finite subset L of G, we have that

1

|Γ|
|{x ∈ Γ : Lx ⊆ ∗ (EBA)}| ≈ 1.

Since µSν (Γ) ≥ α, we have that

µSν ({x ∈ Sν : Lx ⊆ ∗(EBA)}) ≥ α.
It follows that

dS ({x ∈ G : Lx ⊆ EBA}) ≥ α. �

Lemma 2.3. Suppose that A ⊆ G is such that dS(A ∪ gA) = α for all g ∈ G. Then A
is S-thick of level α.

Proof. Take an infinite hyperfinite natural number ν so that µSν (∗A) = α. Fix E ⊆ G
finite and set

A0 := {x ∈ ∗A ∩ Sν : Ex ⊆ ∗A}.
It suffices to show that µSν (A0) = α. Set R := (∗A ∩ Sν) \ A0 and suppose, towards a
contradiction, that µSν (R) > 0. Let x 7→ gx : R→ E be an internal mapping such that
gxx /∈ ∗A. Since E is finite, there is g ∈ E such that, setting R0 := {x ∈ R : gx = g}
(an internal set), we have µSν (R0) > 0. It remains to observe that gR0 is disjoint from
∗A, whence by left invariance of µSν

dS(A ∪ gA) ≥ µSν (∗A ∪ gR0) = µSν (∗A) + µ (gR0) = α+ µSν (R0) > α,

contradicting our assumption on A. �

Recall that the two-sided Banach density BD2(B) > 0 ofB is defined as the supremum
of dS (B) when S ranges among all the two-sided Følner sequences for G.

Lemma 2.4. If G is a countable amenable group and B ⊆ G is such that BD2(B) > 0,
then for every ε > 0 there exists F ⊆ G finite such that BD2(FB) > 1− ε.
Proof. We proceed as in the “dynamical proof” of [2, Lemma 3.2]. In [3, Corollary 3.4],
the authors prove a two-sided Furstenberg correspondence principle, a special case of
which implies that there exists a compact metric space X, a continuous left action of G

on X, an ergodic measure µ on X, and a clopen subset B̂ of X such that BD2 (B) = µ(B̂)
and such that, for any g1, . . . , gn ∈ G, we have

BD2 (g1B ∪ · · · ∪ gnB) ≥ µ((g1 · B̂) ∪ · · · ∪ (gn · B̂)).

(The corollary actually is in terms of intersections, not unions, but the proof readily
adapts to the case of unions.) We therefore have:

sup
F

BD2(FB) ≥ sup
F
µ(F · B̂) = ν(G · B̂).
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Here, the suprema are taken over finite subsets of G. Since G · B̂ is G-invariant and

µ(B̂) > 0, we have by the ergodicity of ν that µ(G · B̂) = 1, whence the lemma is
proven. �

Theorem 2.5. Suppose that G is a countable amenable group and S is a Følner sequence
for G. If A,B ⊆ G are such that dS (A) = α and BD2(B) > 0, then BA is S-syndetic
of level α.

Proof. If A is S-thick of level α then there is nothing to prove. If A is not S-thick of
level α, then by Proposition 2.3 there exists g ∈ G such that dS (A ∪ gA) > α. By
Lemma 2.4, after replacing B with FB for some finite set F , we may assume that B has
2-sided Banach density greater than 1

2 . Fix a two-sided Følner sequence T = (Tn) for

G and ν > N such that µTν (∗B) > 1
2 . Since T is a two-sided Følner sequence, we have

that µTν (∗(Bg−1)) = µTν (∗B). It follows that µTν (∗(B ∩Bg−1)) > 0, whence B ∩Bg−1

has positive Banach density. By Theorem 2.2, the product of B ∩ Bg−1 and A ∪ gA is
S-syndetic of level α. It remains to observe that the product of B ∩ Bg−1 and A ∪ gA
is contained in BA, and hence BA is S-syndetic of level α as well. �

Observe that when G is abelian, and particularly when G = Zd, the Banach den-
sity and its two-sided analogue coincide. Therefore, as mentioned in the introduction,
Theorem 14 and Theorem 18 of [4] are immediate consequences of Theorem 2.5, after

observing that the sequence of sets [−n, n]d as well as any of its subsequences is a Følner
sequence for Zd. Example 15 of [4] shows that the conclusion in Theorem 2.5 is optimal,
even when G is the additive group of integers and S is the Følner sequence of intervals
[1, n].

3. A bound on the number of translates

The following theorem is a refinement of [5, Corollary 3.4]. In particular, we improve
the bound on the number of translates, and also obtain an estimate on the S-density of
translates that witness the thickness of EBA.

Theorem 3.1. Suppose that G is a countable amenable group, S = (Sn) a Følner
sequence for G, and A,B ⊆ G. If dS (A) ≥ α and BD (B) ≥ β, then there exists s > 0
and a finite subset E ⊆ G such that |E| ≤ 1

αβ −
1
α + 1 and EBA is S-thick of level s.

Proof. Suppose that Y ⊆ ∗G and ν ∈ ∗N\N are obtained from A and B as in Lemma 2.1.
Set C = ∗A∩Sν and D = ∗B∩Y . Consider the Loeb-measurable function f : Sν → [0, 1]
defined by

f (x) = µY (xC−1 ∩D) = st

(∣∣xC−1 ∩D
∣∣

|Y |

)
.

A simple approximation argument shows that∫
fdµSν = st

(
1

|Sν |
∑
x∈Sν

∣∣xC−1 ∩D
∣∣

|Y |

)
;

see also [1, Theorem 3.2.9].
Since

(1) f ≥
∫
fdµSν on a positive measure set,

(2) any Loeb measurable set is approximated arbitrarily well from within by an
internal set, and

(3) any internal function attains its minimum value on a hyperfinite set,
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we deduce that there is a standard r > 0 and an infinitesimal η > 0, so that, setting

Γ :=

{
x ∈ Sν :

1

|Y |
∣∣xC−1 ∩D

∣∣ ≥ αβ − η} ,

we have |Γ| > r |Sν |.
Fix a family (pg)g∈G of strictly positive standard real numbers such that

∑
g∈G pg ≤

1
2 .

We now define a sequence of subsets (Hn) of G and a sequence (sn) from G. Define

H0 :=

{
g ∈ G :

1

|Γ|
|{x ∈ Γ : gx /∈ ∗ (BA)}| > pg

}
.

If Hn has been defined and is nonempty, let sn be any element of Hn and set

Hn+1 :=

{
g ∈ G :

1

|Γ|
|{x ∈ Γ : gx /∈ ∗ ({s0, . . . , sn}BA)}| > pg

}
.

If Hn = ∅ then we set Hn+1 = ∅.

We claim Hn = ∅ for n >
⌊

1
αβ −

1
α

⌋
. Towards this end, suppose Hn 6= ∅. For

0 ≤ k ≤ n, take γk ∈ Γ such that

skγk /∈ ∗ ({s0, . . . , sk−1}BA) .

Observe that the sets s0D, s1(γ1C
−1 ∩D), ..., sn(γnC

−1 ∩D) are pairwise disjoint. In
fact, if

siD ∩ sjγjC−1 6= ∅
for 0 ≤ i < j ≤ n, then

sjγj ∈ siDC ⊆ ∗ ({s0, . . . , sj−1}BA) ,

contradicting the choice of γj . Therefore we have that

1 &
1

|Y |
∣∣s0D ∪ s1

(
(γ1C

−1 ∩D
)
∪ · · · ∪ sn

(
(γnC

−1 ∩D
)∣∣

≥ 1

|Y |

(
|D|+

n∑
i=1

∣∣γiC−1 ∩D
∣∣)

≥ β + αβn.

It follows that n ≤
⌊

1
αβ −

1
α

⌋
.

Take the least n such that Hn = ∅. Note that n ≤
⌊

1
αβ −

1
α

⌋
+ 1. If n = 0 then BA

is already S-thick of level r, and there is nothing to prove. Let us assume that n ≥ 1,
and set E = {s0, . . . , sn−1}. It follows that, for every g ∈ G, we have that

1

|Γ|
|{x ∈ Γ : gx ∈ ∗ (EBA)}| ≥ 1− pg.

Suppose that L is a finite subset of G. Then

1

|Γ|
|{x ∈ Γ : Lx ⊆ ∗ (EBA)}| ≥ 1−

∑
g∈L

pg ≥ 1−
∑
g∈G

pg ≥
1

2
.

Therefore
1

|Sν |
|{x ∈ Sν : Lx ⊆ ∗ (EBA)}| ≥ r

2
.

This shows that EBA is S-thick of level r
2 . �

With a similar argument and using Markov’s inequality [9, Lemma 1.3.15] one can
also prove the following result. We omit the details.
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Theorem 3.2. Suppose that G is a countable amenable group, S = (Sn) a Følner
sequence for G, and A,B ⊆ G. If dS (A) ≥ α and BD (B) ≥ β, then for every γ ∈ (0, αβ]

there exists E ⊆ G such that |E| ≤ 1−β
γ + 1 and EBA is S-syndetic of level αβ−γ

1−γ .
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